Tensor Voting: Theory and Applications
نویسنده
چکیده
We present a unified computational framework which properly implements the smoothness constraint to generate descriptions in terms of surfaces, regions, curves, and labelled junctions, from sparse, noisy, binary data in 2-D or 3-D. Each input site can be a point, a point with an associated tangent direction, a point with an associated normal direction, or any combination of the above. The methodology is grounded on two elements: tensor calculus for representation, and linear voting for communication: each input site communicates its information (a tensor) to its neighborhood through a predefined (tensor) field, and therefore casts a (tensor) vote. Each site collects all the votes cast at its location and encodes them into a new tensor. A local, parallel marching process then simultaneously detects features. The proposed approach is very different from traditional variational approaches, as it is non-iterative. Furthermore, the only free parameter is the size of the neighborhood, related to the scale. We have developed several algorithms based on the proposed methodology to address a number of early vision problems, including perceptual grouping in 2-D and 3-D, shape from stereo, and motion grouping and segmentation, and the results are very encouraging.
منابع مشابه
On improving the efficiency of tensor voting, 2011, IEEE Transaction on Pattern Analysis and Machine Intelligence
This paper proposes two alternative formulations to reduce the high computational complexity of tensor voting, a robust perceptual grouping technique used to extract salient information from noisy data. The first scheme consists of numerical approximations of the votes, which have been derived from an in-depth analysis of the plate and ball voting processes. The second scheme simplifies the for...
متن کاملAn Efficient Method for Tensor Voting Using Steerable Filters
In many image analysis applications there is a need to extract curves in noisy images. To achieve a more robust extraction, one can exploit correlations of oriented features over a spatial context in the image. Tensor voting is an existing technique to extract features in this way. In this paper, we present a new computational scheme for tensor voting on a dense field of rank-2 tensors. Using s...
متن کاملA Closed-Form Solution to Tensor Voting: Theory and Applications
We prove a closed-form solution to tensor voting (CFTV): given a point set in any dimensions, our closed-form solution provides an exact, continuous and efficient algorithm for computing a structure-aware tensor that simultaneously achieves salient structure detection and outlier attenuation. Using CFTV, we prove the convergence of tensor voting on a Markov random field (MRF), thus termed as MR...
متن کاملInvestigations of Tensor Voting Modeling
Tensor voting (TV) is a method for inferring geometric structures from sparse, irregular and possibly noisy input. It was initially proposed by Guy and Medioni [Guy96] and has been applied to several computer vision applications. TV generates a dense output field in a domain by dispersing information associated with sparse input tokens. In 3-D this implies that a surface can be generated from a...
متن کاملVoting Algorithm Based on Adaptive Neuro Fuzzy Inference System for Fault Tolerant Systems
some applications are critical and must designed Fault Tolerant System. Usually Voting Algorithm is one of the principle elements of a Fault Tolerant System. Two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. Majority confronts with the problem of threshold limits and voter of weight...
متن کاملVoting Algorithm Based on Adaptive Neuro Fuzzy Inference System for Fault Tolerant Systems
some applications are critical and must designed Fault Tolerant System. Usually Voting Algorithm is one of the principle elements of a Fault Tolerant System. Two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. Majority confronts with the problem of threshold limits and voter of weight...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000